An Improved Method for Edge Detection and Image Segmentation Using Fuzzy Cellular Automata

نویسندگان

  • Reza Shahverdi
  • Madjid Tavana
  • Ali Ebrahimnejad
  • Khadijeh Zahedi
  • Hesam Omranpour
چکیده

Image segmentation is one of the most important and challenging problems in image processing. The main purpose of image segmentation is to partition an image into a set of disjoint regions with uniform attributes. In this study, we propose an improved method for edge detection and image segmentation using fuzzy cellular automata. In the first stage, we introduce a new edge detection method based on fuzzy cellular automata, called the texture histogram, and empirically demonstrate the efficiency of the proposed method and its robustness in denoising images. In the second stage, we propose an edge detection algorithm by considering the mean values of the edges matrix. In this algorithm, we use four fuzzy rules instead of 32 fuzzy rules reported earlier in the literature. In the third and final stage, we use the local edge in the edge detection stage to more accurately accomplish image segmentation. We demonstrate that the proposed method produces better output images in comparison with the separate segmentation and edge detection methods studied in the literature. In addition, we show that the method proposed in this study is more flexible and efficient when noise is added to an image.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cluster-Based Image Segmentation Using Fuzzy Markov Random Field

Image segmentation is an important task in image processing and computer vision which attract many researchers attention. There are a couple of information sets pixels in an image: statistical and structural information which refer to the feature value of pixel data and local correlation of pixel data, respectively. Markov random field (MRF) is a tool for modeling statistical and structural inf...

متن کامل

Edge Detection Based On Nearest Neighbor Linear Cellular Automata Rules and Fuzzy Rule Based System

 Edge Detection is an important task for sharpening the boundary of images to detect the region of interest. This paper applies a linear cellular automata rules and a Mamdani Fuzzy inference model for edge detection in both monochromatic and the RGB images. In the uniform cellular automata a transition matrix has been developed for edge detection. The Results have been compared to the ...

متن کامل

Edge Detection Based On Nearest Neighbor Linear Cellular Automata Rules and Fuzzy Rule Based System

 Edge Detection is an important task for sharpening the boundary of images to detect the region of interest. This paper applies a linear cellular automata rules and a Mamdani Fuzzy inference model for edge detection in both monochromatic and the RGB images. In the uniform cellular automata a transition matrix has been developed for edge detection. The Results have been compared to the ...

متن کامل

High Performance Implementation of Fuzzy C-Means and Watershed Algorithms for MRI Segmentation

Image segmentation is one of the most common steps in digital image processing. The area many image segmentation algorithms (e.g., thresholding, edge detection, and region growing) employed for classifying a digital image into different segments. In this connection, finding a suitable algorithm for medical image segmentation is a challenging task due to mainly the noise, low contrast, and steep...

متن کامل

High Performance Implementation of Fuzzy C-Means and Watershed Algorithms for MRI Segmentation

Image segmentation is one of the most common steps in digital image processing. The area many image segmentation algorithms (e.g., thresholding, edge detection, and region growing) employed for classifying a digital image into different segments. In this connection, finding a suitable algorithm for medical image segmentation is a challenging task due to mainly the noise, low contrast, and steep...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cybernetics and Systems

دوره 47  شماره 

صفحات  -

تاریخ انتشار 2016